Topological Data Analysis

# Homology & Persistence

**Ulderico Fugacci** 

**CNR - IMATI** 





## Homology & Persistence

#### Homology:

A topological invariant detecting the *"holes"* of a shape

 $H_k(K) \cong \begin{cases} \mathbb{Z} & \text{for } k = 0 \\ \mathbb{Z}^6 & \text{for } k = 1 \\ \mathbb{Z} & \text{for } k = 2 \end{cases}$ 

## Homology & Persistence



Captures the *changes in homology* during a filtration

Homology:

# Homology & Persistence

#### Chain Complexes and Simplicial Homology

Filtrations Persistent Homology

# Homology & Persistence

#### Chain Complexes and Simplicial Homology

#### Filtrations and Persistent Homology

## Simplicial Homology



# Simplicial Homology

Given a simplicial complex K,

\* a *k-chain* is a formal sum (with  $\mathbb{Z}_2$  coefficients) of k-simplices of K



#### Examples:

- a + b + e is a 0-chain
- fg + dg + de + eg is a 1-chain
- *abg* + *afg* is a 2-chain

# Simplicial Homology

The *chain complex* C<sub>\*</sub>(K) associated with K consists of:

- A collection {∂<sub>k</sub>}<sub>k∈ℤ</sub> of linear maps where the *boundary map* ∂<sub>k</sub>: C<sub>k</sub>(K) → C<sub>k-1</sub>(K) is defined by



## Simplicial Homology



- ◆ ð₁( ab ) = a + b
- $\partial_1(ab + bc) = a + 2b + c = a + c$
- $\partial_2(afg + efg) = af + ag + 2fg + ef + eg =$ = af + ag + ef + eg
- ★  $\partial_1(af + ag + ef + eg) =$  = 2a + 2f + 2g + 2e = 0

## **Simplicial Homology**



# Simplicial Homology



#### Definition:

- A k-chain c is called:
- ★ k-cycle if c ∈ Ker( $∂_k$ )
- ◆ *k*-*boundary* if c ∈ Im( $\partial_{k+1}$ )

#### Each k-boundary is a k-cycle

# Simplicial Homology

Given a simplicial complex K, the *k-homology group*  $H_k(K)$  of K is defined as

$$H_k(K) := Z_k(K) / B_k(K)$$

where:

- ⋆ Z<sub>k</sub>(K) is the group of k-cycles of K
- B<sub>k</sub>(K) is the group of k-boundaries of K



# Simplicial Homology

 $H_k(K)$  partitions the k-cycles into equivalence classes called *homology classes* 



#### Definition:

Two k-cycles are said *homologous* if they belong to the same homology class or, equivalently, *if their difference is a k-boundary* 

ab+ag+bc+cg is homologous to bc+bg+cd+dg

# Simplicial Homology



# Simplicial Homology



# Simplicial Homology

Homology groups can be defined *in a more general way* by choosing coefficients in  $\mathbb Z$ 

Theorem:

Each homology group can be expressed as

$$H_k(K;\mathbb{Z}) \cong \mathbb{Z}^{\beta_k} \langle c_1, \dots, c_{\beta_k} \rangle \oplus \mathbb{Z}_{\lambda_1} \langle c'_1 \rangle \oplus \dots \oplus \mathbb{Z}_{\lambda_{p_k}} \langle c'_{p_k} \rangle$$

with  $\lambda_{i+1} \mid \lambda_i$ 

We call:

- +  $\beta_k$ , the *k*<sup>th</sup> *Betti number* of K
- +  $\lambda_1,\ldots,\lambda_{p_k}$  , the *torsion coefficients* of K
- +  $c_1, \ldots, c_{eta_k}, c'_1, \ldots, c'_{p_k}$ , the *homology generators* of K



Image from [Dey et al. 2008]

# Simplicial Homology

#### Working with coefficients in $\mathbb Z$ :

Up to isomorphism, the **Betti numbers** and the **torsion coefficients** of K

completely characterize the homology groups of K

Working with coefficients in a field  $\mathbb F$  :

Up to isomorphism, the **Betti numbers** of K

completely characterize the homology groups of K



Image from [Dey et al. 2008]

## Simplicial Homology

The Klein bottle K is a non-orientable 2-dimensional

**Example:** 

manifold embeddable in  $\mathbb{R}^4$  which can be built from

a unit square by the following construction





# Simplicial Homology

By considering  $\mathbb Z$  as coefficient group,

K has the following homology groups

**Example:** 

$$H_k(K; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{for } k = 0 \\ \mathbb{Z} \oplus \mathbb{Z}_2 & \text{for } k = 1 \\ 0 & \text{for } k \ge 2 \end{cases}$$

So, it can be distinguished from a torus T

$$H_k(T; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{ for } k = 0 \\ \mathbb{Z}^2 & \text{ for } k = 1 \\ \mathbb{Z} & \text{ for } k = 2 \\ 0 & \text{ for } k > 2 \end{cases}$$



# Simplicial Homology

By considering  $\mathbb{Z}_2$  as coefficient group,

**Example:** 

the Klein bottle K and the torus T have isomorphic homology groups



# Homology & Persistence

#### Chain Complexes and Simplicial Homology

#### Filtrations and Persistent Homology

### Persistent Homology





### Persistent Homology



### Persistent Homology



### **Persistent Homology**





### Persistent Homology



### Persistent Homology



### Persistent Homology



Image from [Ghrist 2008]

### Persistent Homology



#### Size Functions:

- Estimation of natural pseudo-distance
  between shapes endowed with a function f
- Tracking of the *connected components* of a shape along its evolution induced by *f*



Actually, this coincides with *persistent homology in degree 0* 

Image from [Frosini 1992]

### Persistent Homology



#### Incremental Algorithm for Betti Numbers:

- Introduction of the notion of *filtration*
- De facto computation of persistence pairs



Image from [Delfinado, Edelsbrunner 1995]

## Persistent Homology



## Persistent Homology



#### **Topological Persistence:**

- Introduction and algebraic formulation of the notion of *persistent homology*
- Description of an algorithm for computing persistent homology



### Persistent Homology

#### A Twofold Purpose:

#### **Shape Description**

Which is the shape of a given data?



## Persistent Homology

#### A Twofold Purpose:

#### **Shape Description**

Which is the shape of a given data?





#### **Shape Comparison**

Given two data, do they have the same shape?

Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data



Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data



#### Persistent Homology



Most of the techniques transforming a dataset into a simplicial complex depending on the choice of a parameter actually produce a filtration

Definitions:

Given a filtration  $\mathcal{F}$  and  $p,q \in \mathbb{N}$  such that  $0 \leq p \leq q \leq m$ ,

- the inclusion K<sup>p</sup> ⊆ K<sup>q</sup> induces a *linear map i<sub>k</sub><sup>p,q</sup>* : H<sub>k</sub>(K<sup>p</sup>) → H<sub>k</sub>(K<sup>q</sup>)
- + the (p,q)-persistent k-homology group  $H_k^{p,q}(\mathcal{F})$  of  $\mathcal{F}$  is defined as

$$H_k^{p,q}(\mathcal{F}) := \operatorname{Im}(i_k^{p,q})$$

and consists of the *k-cycles of K<sup>p</sup> that will not turn into k-boundaries in K<sup>q</sup>* (in other terms, it identifies the *homology classes that "persist" from K<sup>p</sup> to K<sup>q</sup>*)

+ the (*p*,*q*)-persistent  $k^{th}$  Betti number  $\beta_k^{p,q}$  of  $\mathcal{F}$  is defined as the rank of  $i_k^{p,q}$ 

The *core information* of persistent homology is given by the *persistence pairs* 

Given a filtration  $\mathscr{F}$ :  $K^0 \subseteq K^1 \subseteq ... \subseteq K^m$ ,



A persistence pair (*p*, *q*) is an element in  $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$  such that p < qrepresenting a **homological class** that is **born at step** *p* and **dies at step** *q* 

The *core information* of persistent homology is given by the *persistence pairs* 

Given a filtration  $\mathscr{F}$ :  $K^0 \subseteq K^1 \subseteq ... \subseteq K^m$ ,



A persistence pair (*p*, *q*) is an element in  $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$  such that p < q representing a **homological class** that is **born at step** *p* and **dies at step** *q* 

The *core information* of persistent homology is given by the *persistence pairs* 

Given a filtration  $\mathscr{F}$ :  $K^0 \subseteq K^1 \subseteq ... \subseteq K^m$ ,



(2, ∞) essential pair

A persistence pair (*p*, *q*) is an element in  $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$  such that p < q representing a **homological class** that is **born at step** *p* and **dies at step** *q* 

Given a filtration  $\mathscr{F}$ :  $K^0 \subseteq K^1 \subseteq ... \subseteq K^m$ ,  $k \in \mathbb{N}$ , and a field  $\mathbb{F}$ ,

its *persistence module*  $M := \bigoplus_{p \in \mathbb{N}} H_k(K^p; \mathbb{F})$  is a *finitely generated*  $\mathbb{F}$ *[x]-module* 

The corresponding structure theorem ensures us that



So, the persistence module M is completely determined by its persistence pairs

I.e., the collection of the pairs  $(p_i, q_i), (p'_j, \infty)$ 

# Bibliography

#### General References:

- Books on TDA:
  - A. J. Zomorodian. *Topology for computing*. Cambridge University Press, 2005.
  - \* H. Edelsbrunner, J. Harer. *Computational topology: an introduction*. American Mathematical Society, 2010.
  - R. W. Ghrist. *Elementary applied topology*. Seattle: Createspace, 2014.

#### Papers on TDA:

• G. Carlsson. *Topology and data*. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.

#### Today's References:

- Simplicial Homology:
  - J. R. Munkres. *Elements of algebraic topology*. CRC Press, 1984.
- Persistent Homology:
  - U. Fugacci, S. Scaramuccia, F. Iuricich, L. De Floriani. *Persistent homology: a step-by-step introduction for newcomers*. Eurographics Italian Chapter Conference, pages 1-10, 2016.